
LETTERS TO THE EDITOR
Comparing Algorithms for
Genotype Imputation

To the Editor: When the data from a genome-wide associ-

ation study is analyzed, a key question is how to extract the

strongest ‘‘signal’’ of association. Over the last few years,

a class of genotype imputation methods1–3 has become in-

creasingly popular for boosting the signal above that ob-

tained by standard single-SNP analyses.

Here, we define genotype imputation as the prediction

of genotypes at SNPs that have not been assayed in an

association study. This is typically accomplished by mod-
eling allelic correlations among SNPs (many of which

will not have been typed in a given study) in a panel

of known haplotypes, such as the HapMap,4 and extrap-

olating these correlations to a sample of interest through

information from SNPs that have been typed in that

sample.

Sophisticated imputation methods have been shown to

be more powerful than tagging approaches that test only

single SNPs or small haplotypes of SNPs on a genotyping

chip,3 to provide clearer pictures of associated regions

that aid design of replication and fine-mapping studies,5

and to facilitate meta-analysis projects6 by allowing data

sets collected with different genotyping chips to be com-

bined for increased power.
Figure 1. Results of Running IMPUTE/SNPTEST and SNPMStat on the Simulated Data Set Provided with the SNPMStat Software
This data set was designed to mimic a real Rheumatoid Arthritis study7 and consists of data at 100 SNPs in 1000 cases and 1000 controls.
Black dots represent tests at genotyped SNPs, and red dots represent tests at imputed SNPs. Test statistics are plotted on the �log10
p value scale. Both programs were run under the assumption of an additive model of association. The right-hand plot shows the test
statistics of both methods plotted against each other at all genotyped and imputed SNPs.
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Figure 2. Results of Running IMPUTE/SNPTEST and SNPMStat on a Data Set Simulated with the HAPGEN Program
The data set consists of 500 cases and 500 controls at 300 SNPs on the Affymetrix 500k chip from a region on chromosome 20. Black dots
represent tests at genotyped SNPs, and red dots represent tests at imputed SNPs. Test statistics are plotted on the �log10 p value scale.
Both programs were run under the assumption of an additive model of association. The right-hand plot shows the test statistics of both
methods plotted against each other at all genotyped and imputed SNPs.
In the February 2008 issue of the Journal, Lin et al.7 pro-

posed a new method of genotype imputation, called

SNPMStat. The main strength of the method is that it

simultaneously fits a model of association and imputes

missing genotypes. Competing methods that impute ge-

notypes without acknowledging phenotypic status for-

mally assume that all of the individuals in a study are no

more related to one another than would be a set of people

sampled at random from a ‘‘population.’’ Near a disease lo-

cus, however, cases are more closely related to each other

than this assumption would imply; consequently, explic-

itly modeling each individual’s disease status could lead

to more accurate imputation and measures of association

strength.

A limiting feature of the proposed method is that it uses

only a small number of SNPs (four at most) to impute each

untyped SNP; this constraint arises from the computa-
536 The American Journal of Human Genetics 83, 535–540, Octobe
tional challenges of fitting a joint model of genotype and

phenotype, and it diminishes the capacity to model com-

plex correlations between SNPs. An additional limitation

is the use of a simple, parametric, multinomial model of

haplotype frequencies: the method’s likelihood-maximiza-

tion process involves an implicit phasing of the SNP geno-

type data, and previous comparisons8 have shown that

this model performs much worse at phasing than do the

models underlying competing imputation approaches.2,3

By contrast, our own method3 (called IMPUTE) and

other methods2 impute genotypes without reference to

phenotype but use more of the flanking SNPs and more so-

phisticated population-genetics models to predict unob-

served genotypes. These genotypes can then be included

in tests of association (e.g., with our program SNPTEST)

that account for the uncertainty in the predictions and at

the same time condition upon observed covariates
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Figure 3. Results of Running IMPUTE/SNPTEST and SNPMStat on a Real Data Set in a Region Shown to be Associated with Crohn’s
Disease in the WTCCC Study5

This data set consists of 2938 controls and 1758 cases at 181 of the SNPs on the Affymetrix 500k chip in a 1 Mb region of chromosome 1.
Black dots represent tests at genotyped SNPs, and red dots represent tests at imputed SNPs. Test statistics are plotted on the �log10
p value scale. Both programs were run under the assumption of an additive model of association. The right-hand plot shows the test
statistics of both methods plotted against each other at all genotyped and imputed SNPs.
(completing what Lin et al. call a ‘‘two-stage’’ procedure,

which contrasts with their ‘‘joint’’ approach).

Many researchers working in this field would like to

know which method is most powerful. With regard to the

approaches discussed above, this boils down to whether

a joint model fitted to a small amount of data is more

accurate than a two-stage strategy that makes fuller use

of the genotype data when carrying out imputation.

Intuitively, we can predict that a joint model will prove

most useful when there are large differences between cases

and controls (i.e., risk alleles with strong effects) and that

a two-stage model will fare better if cases and controls

look more similar (this claim is based on the reasonable as-

sumption that the models underlying the two-stage ap-

proaches would impute genotypes more accurately in

a controls-only data set). The conditions under which
The Ameri
the cases and controls are ‘‘different enough’’ for the joint

model to gain an advantage remain unclear, so researchers

are currently looking to simulation studies (and some real

ones) for guidance.

Lin et al. present simulations that they claim extensively

examine the problem of untyped SNPs, and they use these

to suggest that their method is more powerful than exist-

ing two-stage approaches. Unfortunately, their simulations

do not apply the competing approaches in realistic set-

tings, so it is difficult to justify these claims. Specifically,

all of their simulations involve data sets of five consecutive

SNPs from chromosome 18 of the CEU HapMap, where

four of the SNPs are used to impute the fifth (whose geno-

types in a simulated case-control set are hidden from the

imputation methods). None of the referenced papers de-

scribe or recommend their use on such small data sets,
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nor are such data sets typical of modern association stud-

ies, so the comparisons might well be biased in favor of

Lin et al.’s joint model.

To investigate this issue, we applied the SNPMStat

method and our own two-stage approach, using the pro-

grams IMPUTE and SNPTEST, to two simulated data sets

and one real data set from the Wellcome Trust Case Con-

trol Consortium (WTCCC) (Figures 1–3). The first simu-

lated data set was originally supplied with the SNPMStat

software. This data set was designed to mimic a real

Rheumatoid Arthritis study7 and consists of data at 100

SNPs in 1000 cases and 1000 controls. In the process of

replying to this letter, the authors of SNPMStat found

bugs in SNPMStat, changed the file formats, and added

new SNPs to the data set. We removed these new SNPs

from the newly formatted files and reran our analysis

with the new version of the software. For the second data

set, we used the HAPGEN program to simulate 500 cases

and 500 controls at 300 SNPs on the Affymetrix 500k

chip from a region on chromosome 20. The third data

set is a real one from a region shown to be associated

with Crohn’s Disease (CD [MIM 266600]) in the WTCCC

study.5 This data set consists of 2938 controls and 1758

cases at 181 of the SNPs on the Affymetrix 500k chip in

a 1 Mb region of chromosome 1.

Figure 1 depicts a region with a clear signal of associa-

tion. Both methods are able to identify a SNP that is

more strongly associated with disease status than is any

genotyped SNP (illustrating the capacity of imputation

methods to inform subsequent fine-mapping studies),

but IMPUTE/SNPTEST picks out this SNP much more

clearly. Figure 2 shows a region with a much weaker signal

of association: the smallest p value at the genotyped SNPs

does not even reach 10�3. Here, we see again that both im-

putation methods boost the signal, but with a disparity

between the smallest p values (nearly 10�6 for IMPUTE/

SNPTEST, as compared to 10�4 for SNPMStat) that could

easily mean the difference between carrying this region

forward for further scrutiny and losing it among the geno-

mic noise. The comparison in Figure 3 uses real data from

the WTCCC study. As before, although it is clear that either

imputation method can enhance our understanding of

this associated region, our two-stage method amplifies

the signal to a much greater extent—IMPUTE/SNPTEST

achieves a p value over 100 times smaller than the smallest

p value generated by SNPMStat, and our claim about the

strength of this association is supported by external data.9

These three figures do not amount to a systematic power

comparison, but they are highly suggestive, as shown fur-

ther by the consistently (and appropriately) stronger sig-

nals extracted by IMPUTE/SNPTEST at highly associated,

untyped SNPs throughout these regions (rightmost panels

in Figures 1–3). Thus, on data sets with realistic SNP land-

scapes and disease effect sizes, it appears that much more is

gained by the use of advanced population-genetics models

than is lost by failure to model the differences between

cases and controls.
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As a technical point, we note that power can be com-

pared between two methods only if they both control

their type I error. To assess this for our own method, we

used HAPGEN to simulate a case-control data set consist-

ing of 1000 cases and 1000 controls at all of the SNPs on

the Affymetrix 500K chip on chromosome 1 under the

null hypothesis of no association. We then applied the

IMPUTE/SNPTEST approach to this data set. Figure 4

shows the PP plot based on 50,000 of these SNPs, which

indicates that type I error is controlled very well (as might

be expected from a method that imputes genotypes ‘‘un-

der the null’’).

Finally, it is important in this context to distinguish be-

tween two forms of type I error. The first, which we ad-

dress here and Lin et al.7 mention briefly, pertains to

the detection of novel regions of association in the ge-

nome via imputation. The second, which is the focus of

Figure 1 in Lin et al., reflects the ability of a method to

separate causal from noncausal associations in the neigh-

borhood of a true risk variant. Both are important issues,

but our methods development has focused primarily on

the first of these questions; others have found that

analysis techniques grounded in imputation models sim-

ilar to ours show great promise for fine-mapping applica-

tions.2

In summary, the large and consistent differences shown

in these early results on realistic data sets suggest that

methods that use as much of the available genotype data

as possible might be more powerful than those that fit

a phenotype model using only a subset of the data and

Figure 4. An Evaluation of Type I Error of the IMPUTE/SNPTEST
Approach
HAPGEN was used to simulate a case-control data set consisting of
1000 cases and 1000 controls at all of the SNPs on the Affymetrix
500K chip on chromosome 1 under the null hypothesis of no asso-
ciation. The plot shows the observed �log10 p-values at a random
subset of 50,000 of the imputed SNPs versus their expected values
under the null.
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that the simulation studies presented by Lin et al. should,

therefore, be interpreted with caution.
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Reply to Marchini and Howie

To the Editor: As noted by Marchini and Howie (MH), an

advantage of our maximum likelihood (ML) approach is

that the genotypes of untyped SNPs are inferred from

proper posterior distributions. The two-stage approach,

which ignores the phenotype information in the imputa-

tion of genotypes, can yield biased estimates of genetic

effects near disease loci and consequently reduce power,

especially when the genetic effects are strong. It is difficult

to fully account for the uncertainties of the imputed geno-

types in the two-stage approach, especially if environmen-

tal covariates are involved.

From a frequentist point of view, it is impossible to do

better than the ML approach, which has the highest statis-

tical efficiency among all valid methods (that use the same

data and make the same assumptions). The two-stage ap-

proach might produce more accurate results than the ML

approach in certain situations because it allows the use of

sophisticated population-genetics models in the first stage.

The ML approach is more robust, in that it estimates the

joint distribution between the untyped SNP and the flank-

ing markers nonparametrically. Although we use a small

number of flanking markers, we search over all subsets of
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flanking markers around the untyped SNP and select the

subset that provides the best prediction of genotypes at

the untyped SNP. By searching over all possible subsets of

four SNPs among the 20 SNPs closest to each untyped

HapMap SNP, we can typically obtain Rs2 of 1 for more

than 50% of untyped SNPs and Rs2 of > 0.9 for 80% of un-

typed SNPs. It is unclear how much improvement sophis-

ticated population-genetics models can bring.

MH are absolutely right that our simulation studies did

not evaluate the role of sophisticated population-genetics

models. Indeed, we stated this fact in the Discussion of

our article. Our simulation studies were designed to com-

pare the ML and two-stage approaches when the same

set of flanking markers is used. The results showed the effi-

ciency gain of the ML approach due to the use of the phe-

notype information when inferring unobserved genotypes

and the use of retrospective likelihood for reflecting case-

control sampling. When applying the ML method to real

data, we always search over a large region around each un-

typed SNP to find a set of flanking markers that provides

the best prediction of genotypes for the untyped SNP.

We are intrigued by the comparisons between SNPMStat

and IMPUTE/SNPTEST reported by MH. However, it is dif-

ficult to draw any firm conclusion from a small number of

selective data sets. The results for the Rheumatoid Arthritis
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